1.1方案背景
旭安IMC森林防火综合管理系统以现代地理学、大气科学、林学、火灾科学等为理论基础,以地理信息系统(GIS)、数字高程图(ASTERDEM)、全球定位系统(GPS)、空间决策支持系统以及计算机网络、现代通讯技术等为技术支撑,突破传统的林火预防和扑救模式,运用系统工程的理论方法,融专家经验、现代信息技术、科学计算于一体,对森林防火信息管理,林火监测、火险预报、火行为预测、扑火方案辅助决策、林火损失评估等工作具有很大的帮助。系统的设计思路主要体现以下几个方面:
1. 强化森林防扑火信息的综合管理
提高森林防扑火信息综合管理能力的目的,是使林业部门在森林火灾到来之前和出现之后能够做到信息来源畅通、信息处理及时、应急反应敏捷。具体地可分为以下几种情况:
(1)在非防火期做好以下工作:
信息日常管理:包括信息发布、文献管理、报表管理、值班调度、热点分布、信息查询、态势信息、信息专递和报表统计等。
防火设施规划:主要是对观测点的位置进行优化,保证其监测网的监视覆盖区最大。
火险知识训练:通过本系统培训各级管理人员判断火险指标的能力。
林火行为知识训练:通过在计算机上点“假想火”,模拟各种条件下火蔓延过程,使管理人员了解并掌握林火行为特征。
林火扑救决策训练:通过向指挥者提供各种图文资料,使其能针对各种模拟火场制定扑救方案。
(2)在防火期能够顺利完成以下工作:
火险天气预测预报:为用户提供火险天气预报。
火险等级预测预报:进行分地区的火险等级预测预报。
林火监测辅助决策:根据各地区的火险天气预报和火险等级预报,为各地分别提供各自不同的火灾预防措施、火源管理措施、扑火队伍战备措施等辅助决策意见。
(3)林火发生时能够完成以下工作:
林火行为预测。林火一旦发生,系统可迅速向决策者提供预测的火蔓延速度、火场扩展趋势、火线强度等重要的火行为特征参量值。
视频实时监测。通过视频监控技术对林火的自动定位,为林火的预警、接警提供快速准确实时的依据。
林火扑救辅助决策。系统针对不同火情帮助指挥者制定决策方案,包括确定扑救方式、扑救力量配置和扑救队伍行军路线等。
2. 提高森林防扑火机制和手段的智能化和自动化程度
本系统从管理模型、管理方法、管理软件到人机界面,全面提高森林防火机制和手段的智能化和自动化程度。具体如下:
(1)管理模型:不局限于运筹学的数学模型,而且引入人工智能的知识模型。由系统的总控模块把多种模型进行集成,完成不同的管理任务。
(2)管理方法:系统拟实现的预测、规划、优化、决策等功能,都建立在科学的理论模型基础上,在地理信息系统和计算机仿真平台上完成。
(3)多库协同:管理软件不仅使用数据库、模型库、知识库,还引入图形库、图像库、文字库等多媒体文档库,由库管理子系统对它们进行协调管理。这种多库协同的方式便于储存、管理、查询、维护多模式的林火信息和模型,为智能管理提供灵活高效的支持环境。
(4)人机界面:系统应建立多种智能导航界面,为管理人员和计算机通信提供友好直观的接口。当用户选取某一菜单或执行某一功能时,智能向导将一步步提示用户进行下一步操作,给出输入参数的含义和取值范围等等。当用户熟悉软件后,也可把智能向导选项关闭以加快速度。
(5)地理信息系统基础平台:除完成基础的和常规的地理信息采集、信息存储与管理、信息处理与分析、信息显示和输出等任务外,还应为各应用子系统提供模型接口和数据接口,并能够完成以下特殊功能:
矢量、栅格和TIN等多种数据格式之间的相互转换;
多源、多类数据的融合与匹配;
进行三维分析,生成和显示火险区地面的3D图,计算了望台监测覆盖区等;
进行网络分析,优化扑救队伍调度路线;
用2D和3D方式显示林火预测和决策结果,如林火蔓延趋势、扑救队伍行军路线等;
3. 提高范围内森林防扑火行动的整体协调性、联动机制和反应速度
在多区域同时出现森林火灾时,应采用GIS管理平台技术,以一个总中心、多个分中心、分级监视与信息反馈、统一指挥调度的方式对全局的森林防扑火行动进行整体协调,保持相互之间的联动,以此提高全局范围内森林防扑火行动的整体反应速度。为此,本系统按照控制中心与各区、片分中心,控制中心与普通用户,以及控制中心与现场救灾人员之间的关系机制不同,划分为三种不同的体系结构:
(1)控制中心与分中心之间的客户/服务器体系结构
(2)信息中心与普通用户之间的浏览器/服务器体系结构
(3)移动用户的单机运行模式
1.2系统概述
森林是世界的主要碳库,对于维持全球气候与环境的稳定性起着关键作用;而森林大火则会烧毁大量林木,带来包括加剧碳排放和全球暖化等严重的环境问题,以及导致生命及财产损失。国家林业局数据显示,中国每年大约有2%的森林因火灾而遭受严重破坏,林火灾具有突发性、灾害发生的随机性、短时间内可造成巨大损失的特点。因此迅速发现和扑灭林火,就成为了森林防火的重中之重。
传统视频监控的现状
无论是传统的第一代模拟视频监控系统,还是第二代、第三代部分或完全数字化网络化的视频监控系统,都具有一些固有的局限性:由于人类自身的弱点,易导致漏报。
一般在很多情况下,人类并非一个可以完全信赖的观察者,他们在观察实时的视频流或观察录像回放的时候,由于监控人员个体条件的不同以及自身生理上的弱点,经常无法察觉到安全威胁,从而可能导致漏报现象的发生。
各个监控点不能每时每刻都处于监控
除了一些规模较小的视频监控应用之外,很少有视频监控系统会按照1∶1的比例为监控摄像机配置监视器。因此,对于机场、港湾等大型的视频监控系统,各个监控点并非每时每刻都处于监控当中。
报警发生后对录像数据进行分析通常是安全人员必须要做的工作之一,而误报和漏报现象则进一步加剧了对数据分析的需求。安全人员经常被要求找出与报警事件相关的录像资料,找到肇事者、确定事故责任或评估该事件的安全威胁。 由于传统视频监控系统缺乏智能因素,录像数据无法被有效地分类存储,最多只能打上时间标签,因此数据分析工作变得极其耗时,并且很难获得全面的信息,而经常发生的误报现象使无用数据进一步增加,从而给数据分析工作带来更大的难度。
响应时间长
对于安全威胁的响应速度关系到一个安全系统的整体性能。传统的视频监控系统通常都由安全工作人员对安全威胁作出响应和处理,这对于处理一般性的、实时响应要求较低的安全威胁来说已经足够。 但是很多情况下,在威胁发生时,需要安全系统的多个功能 部分,甚至多个安全相关的部门在最短的时间内协调配合,共同处理危机。这时候,监控系统的响应速度将直接关系到用户的人身或财产的损失情况。
我们认为森林火灾难以完全避免,因此保护林木的最佳方法,便是缩短火灾侦察的时间,防止火势蔓延及失控。因此我们本着保护国家山林及天然资源的使命,建设智能森林火险综合管理系统,并根据不同林业的需求提供度身订造及针对性的解决方案。
「智能森林火险综合管理系统」是侦察森林火灾技术的突破。现时常用的侦察火灾方法大多依靠森林内瞭望台当值人员及游客的报告,但这样既非自动化,亦太依赖个人的判断力。另外亦有机构使用红外线人造卫星影像系统,但这方法只能反映已扩散蔓延的森林大火,却难以侦测小规模的山火。而且要为红外线图片进行分析亦不容易,机构最少要用一至两小时,才能侦测到火灾位置。我们设计的「智能森林火险综合管理系统」,正是要跨越这些限制。
视频监控是最直观最有效的方式,从最开始的人员巡逻到现在的摄像机监控都是想通过视觉画面来直接监控,但是由于人眼容易疲劳和其他画面太多等因素导致视频监控不能发挥应有的效果,更多的成为了事后的查询记录,虽然也能帮助解决一些问题,但是我们更多的希望是防止非正常事件的发生,把他们消灭在萌芽之中。要做到这些,就要解决用人眼监控的弱点,我们将提供智能视频分析技术,通过机器眼+机器脑来防范,真正做到24小时有效监控。
系统建设方案
1.1监控模拟布点
根据前期摸查和调研,发现森林火险事件多发生在东西面的两个部位,而东西两组团范围广阔,最远距离达90公里,监控难度较大。结合规划任务与过往实际灾害数据,森林防火体系现计划分别于1区、2区、3区、4区建设10个森林防火视频监控点,具体分布区域见下表:

1.2模拟覆盖效果图
根据软件技术的地形模拟功能,对某市进行模拟选点(坐标位置)。下列(1)(2)两张模拟覆盖图更真实的体现到实际覆盖情况,供客户参考与有针对性的选址。
(1)
(2)
林区的山体情况复杂,实际安装需按现场调研后协商制定。
1.3系统技术特点及优势
1.3.1系统技术特点
1.基于远红外设备的长距离森林火灾分析算法
独特的森林火灾热成像分析算法,最远能监测2公里处2米*2米木质火源;能去除车辆等转瞬即逝的热源和日间太阳照在山体没有植披的石层和土层导致的高温干扰。高火情识别率,低误报率。

我们的平台自带离线GIS系统,并通过DEM高程库实现了站点周边全区域的三维建模,客户可自由编译路径、地名与周边设施。精度为Google地球中国区的9倍。
3.基于DEM库三维建模实现的单站点精确火情定位
通常火情或事件的定位需要由2个站点配合完成(类似人类的双眼定位原理),我们的系统可由单个站点通过DEM高程库完成的三维模型实现单站点精确定位,经实测定位精度小于半径27米,火情精确定位有助于业主方的预防、决策与扑救工作。
4.双光谱火情分析
系统在红外热成像火灾算法基础下利用前端工控机配合长焦成像设备接入我司自有烟感分析软件,辅助红外分析软件观测山背/山沟火情,同时实现了周边林业资源观测、病虫害观测与其他的观测功能。
5.火情所见即所得
出现火情后,用户可点击地图上多个火情标志中的任意一处火点,系统可自动分析锁定火点,自动调整云台水平/垂直方位与镜头焦距/视场角,使指挥人员能立即观看现场视频,做到火情的所见即所得。
6.全景图与智能屏蔽功能
支持360度全景拼图,系统可以实现红外热像图的无缝智能拼图的全景红外热像分析功能。获得前端现场所有环境信息,快速实现全方位的火情决策分析。支持静态屏蔽功能通过标识监控区域内的已知热对象,对已知热源进行屏蔽,最大程度上减少人为误报,如建筑物/光伏,太阳能板等。
7.系统覆盖范围仿真功能
通过准确的高度数据库与三维模型,我们可在系统的地理信息系统上软件仿真所有建设站点,模拟站点覆盖范围,选取最优站点达到最大的覆盖范围,大大减少了勘测成本。
1.3.2系统技术优势
微小火源识别前提下的大范围覆盖——独有专利的火灾热成像图像分析算法,单台终端最远能监测5公里处2米*2米木质火源。
智能视频分析——通过双目可见光和热成像分析技术,可精确定位火情火灾情况。
自动巡检与主动告警——监控终端支持全范围自动扫描,指定范围自动扫描,手动扫描功能。支持火情主动告警功能,包括声音告警和短信告警。
数据分析——支持基于事件的历史信息检索。监控数据、异常数据和报警信息会自动存储在相对应的设备数据栏目中,可以实现快速准确的调用分析。
终端防盗设计——监控终端主控板内嵌GPS芯片,可支持断连6小时内识别终端位置。云台和防风杆采用异形螺丝紧固连接,普通扳手无法打开。防风杆离地3米内无扶手,只能使用梯子攀援。
站点软件仿真——通过准确的高度数据库与三维模型,我们可在系统的地理信息系统上软件仿真所有建设站点的可视范围,做到系统识别盲区可视化,大大降低了选点与勘测成本

1.3.3系统核心技术及价值
核心技术:
智能视频监控系统对已知干扰源屏蔽功能和方法
远红外智能识别火情算法与自动告警功能
利用二维摄像设备配合三维地图进行距离测量和三维地理位置标定的实时算法
客户价值:
识别微小火源的能力:在长距离识别微小火源的能力使客户能在火情早期迅速作出火情应对判断;
主动告警的能力:不依赖于肉眼,系统自动识别火情后的第一时间以声音、短信、push消息等多种方式主动向多个有关人员及部门进行告警;
成本的降低:通过系统对站点仿真、防雷、防盗、告警能力、远程管理能力、数据分析能力等方面的独特设计,大大降低方案整个生命周期的安装、维护运营成本。